Haskellbrot draws a Mandelbrot set (or a Julia or "multibrot" set) to your console window. It's unlikely to be any use to you, unless you're interested in how a complete Haskell beginner writes basic Haskell.
The output looks something like this:
To compile it you will need GHC. On Ubuntu, this will install it:
sudo apt-get install ghc6
If you save the code as Haskellbrot.hs you can compile and run like this:
ghc --make Haskellbrot.hs ./Haskellbrot
Here is the code:
{-----------------------------} import Complex {-----------------------------} get_increment :: (RealFloat a) => a -> a -> Int -> a get_increment min max reg = (max-min) / ( fromIntegral reg ) generate_coords_row :: (RealFloat a) => a -> a -> Int -> a -> [Complex a] generate_coords_row min_r max_r reg_r current_c = take (reg_r+1) ( iterate ( + ( ( get_increment min_r max_r reg_r ) :+ 0 ) ) ( min_r :+ current_c ) ) generate_coords_complex :: (RealFloat a) => a -> a -> Int -> [a] generate_coords_complex min_c max_c reg_c = take (reg_c+1) ( iterate ( + ( get_increment min_c max_c reg_c ) ) ( min_c ) ) generate_coords_array :: (RealFloat a) => a -> a -> a -> a -> Int -> Int -> [Complex a] generate_coords_array min_r max_r min_c max_c reg_r reg_c = foldl1 (++) ( map ( generate_coords_row min_r max_r reg_r ) ( generate_coords_complex min_c max_c reg_c ) ) {-----------------------------} in_or_out :: Int -> String in_or_out (-1) = "*" in_or_out x = " " get_fractal_row :: [Int] -> String get_fractal_row a = foldl1 (++) ( map in_or_out a ) impl_print_fractal :: Int -> ( [Int], [Int] ) -> IO() impl_print_fractal row_width ([], b) = impl_print_fractal row_width ( splitAt row_width b ) impl_print_fractal _ (a, []) = putStrLn( get_fractal_row a ) impl_print_fractal row_width (a, b) = do { putStrLn( get_fractal_row a ); impl_print_fractal row_width ( splitAt row_width b ) } {- Given a width in columns, and an array of numbers (-1 for in the set, >-1 for outside), draw a mandelbrot set on the console. -} print_fractal :: Int -> [Int] -> IO() print_fractal row_width array = impl_print_fractal row_width ( [], array ) {-----------------------------} {- Perform one Mandelbrot interator z -> z^2 + c -} multibrot_julia_iterate :: (RealFloat a) => Int-> Complex a -> Complex a -> Complex a multibrot_julia_iterate pow c z = z^pow + c {- Decide the fate of one pair z, c, using count iterations. return of -1 means inside the set, any other value is the number of iterations left before we would have declared it inside -} multibrot_julia_decide :: (RealFloat a) => Int-> Int -> Complex a -> Complex a -> Int multibrot_julia_decide pow count _ (x:+y) | x > 1 = count multibrot_julia_decide pow count _ (x:+y) | y > 1 = count multibrot_julia_decide pow count _ (x:+y) | x < -1 = count multibrot_julia_decide pow count _ (x:+y) | y < -1 = count multibrot_julia_decide pow 0 c z = -1 multibrot_julia_decide pow count c z = multibrot_julia_decide pow ( count-1 ) c ( multibrot_julia_iterate pow c z ) {- Decide the fate of a value of c in the Mandelbrot set -} multibrot_decide :: (RealFloat a) => Int -> Int -> Complex a -> Int multibrot_decide pow count c = multibrot_julia_decide pow count c ( 0 :+ 0 ) {-----------------------------} {- Draw a "multibrot" set - where z is raised to a different power (not 2) -} draw_multibrot :: (RealFloat a) => Int -> a -> a -> a -> a -> Int -> Int -> Int -> IO() draw_multibrot pow min_r max_r min_c max_c cols rows iterations = print_fractal (cols+1) ( map ( multibrot_decide pow iterations ) ( generate_coords_array min_r max_r min_c max_c cols rows ) ) {- Draw a Mandelbrot set -} draw_mandelbrot :: (RealFloat a) => a -> a -> a -> a -> Int -> Int -> Int -> IO() draw_mandelbrot = draw_multibrot 2 {- Draw a Julia set -} draw_julia :: (RealFloat a) => a -> a -> a -> a -> Int -> Int -> Int -> Complex a -> IO() draw_julia min_r max_r min_c max_c cols rows iterations fixed_c = print_fractal (cols+1) ( map ( multibrot_julia_decide 2 iterations fixed_c ) ( generate_coords_array min_r max_r min_c max_c cols rows ) ) main :: IO () main = draw_mandelbrot (-1.3) 0.75 (-0.9) 0.9 78 40 200 -- Full Mandelbrot set --main = draw_julia (-1.2) 1.2 (-1.1) 1.1 78 40 200 (0.2 :+ 0.545) -- Full Julia at (0.2 + 0.545i) --main = draw_multibrot 3 (-1.2) 0.75 (-1.1) 1.1 78 40 200 -- Full "multibrot" with d=3 --main = draw_multibrot 4 (-1.2) 0.75 (-1.1) 1.1 78 40 200 -- Full "multibrot" with d=4 --main = draw_mandelbrot (-0.8) (-0.7) (-0.2) 0.2 78 40 200 -- Zoomed in on left hand side in middle
This code is made available under the terms of the GPLv2, or, at your discretion, any later version:
Haskellbrot - draw a mandelbrot or related fractal to the console Copyright (C) 2008 Andy Balaam This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA